US009225596B2

a2z United States Patent (10) Patent No.: US 9,225,596 B2
Dunn et al. 45) Date of Patent: Dec. 29, 2015
(54) UNDIFFERENTIATED SERVICE DOMAINS 8,671,072 B1* 3/2014 Shahetal. ... 707/610
2007/0266383 Al* 11/2007 Whitc_e P 718/1
(71) Applicant: Citrix Systems, Inc., Fort Lauderdale, 2012/0167122 Al 6/2012 Koskimies
FL (US)
OTHER PUBLICATIONS
(72) Inventors: ﬁnld r.eWCD u%nigamg%dge (GB); James XenClient, http://www.citrix.com/products/xenclient/overview.html
ulpin, Cambridge (GB) (last retrieved Aug. 15, 2013).
(73) Assignee: Citrix Systems, Inc., Fort Lauderdale Qubes O)S Project, http://'www.qubes-os.org/trac (last retrieved Aug.
: ? ” ’ 15, 2013).
FL (US) Mirage OS, http://xenproject.org/developers/teams/mirage-os.html
. (last retrieved Aug. 15, 2013).
(*) Notice: Subject. to any dlsclalmer,. the term of this Oct. 9, 2014—(WO) International Search Report—App PCT/
patent is extended or adjusted under 35 US2014/035775.
(21) Appl. No.: 13/886,024
(22) Filed: May 2, 2013 Primary Examiner — Liangche A Wang .
(74) Attorney, Agent, or Firm — Banner & Witcoff, Ltd.
(65) Prior Publication Data
US 2014/0330948 A1 Nov. 6, 2014 (57) ABSTRACT
(51) Int.CL Guest domains (virtual machines) may execute at a virtual-
GO6F 15/177 (2006.01) ization server. During execution, the guest domains may
HO4L 12724 (2006.01) request various services to facilitate their operation. The vir-
GOGF 9/455 (2006.01) tualization server may disaggregate the services requested by
GOG6F 9/50 (2006.01) the guest domains among various service domains. A service
(52) US.Cl domain may be configured to provide one the services. The
CPC . HO4L 41/0813 (2013.01); GOGF 9/45558 virtualization server may also maintain a pool of partially
"""" (2013.01); GOGF 9 /50'77 (’2013 01); GO6F initialized service domains. When a guest domain requests a
2009/45575 (2013.01); GOGF 2209/5011 particular service, one of the partially initialized service
T (2013.01) domains may be selected from the pool, and the partially
53) Field of Classification S h ’ initialized service domain may complete initialization to
(58) UISPCO assihcation Searc 709/220. 221. 222 become an initialized service domain. The initialized service
See a hcatlon ﬁle forcomlete ;earch his t’o ’ domain may thus be configured to provide the service
PP P RE requested by a guest domain. The virtualization server may
(56) References Cited periodically replenish the pool of partially initialized service

U.S. PATENT DOCUMENTS

7,143,279 B2* 11/2006 Goudetal.ccoveevnnen. 713/2
7,827,152 B1 11/2010 Gangasharan et al.

G

domains to ensure that a partially initialized service domain is
available upon demand from one of the guest domains.

18 Claims, 9 Drawing Sheets

412 T &9

/@

Management Server

i

A

Network

P
w] Element
A

-1 Network
K :g Slorage Element
g % B B

Network

<
Storage Element
c c

Network

—
D

410
404a 405a
403a -

404b
4%\ e

Network

402

s
w] Element
A

—1 Netwark
. k Storage Element
B B

L— Network

Storage)] Element
c c

I I Network

Element
D

US 9,225,596 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Lars Kurth, “Virtualization in the Cloud: Featuring Xen and XCP”
The Eleventh Annual Southern California Linux Expo (SCALE! 1x),
Feb. 24, 2013, retrieved on Aug. 8, 2014 from http://www.
socallinuxexpo.org/scalel 1 x/presentations/virtualization-xen-and-
xcp.html.

Patrick Colp et al. “Breaking Up is Hard to Do,” Operating Systems
Principles, ACM, 2 Penn Plaza Suite 701, NY, NY 10121-0701, Oct.
23,2011, pp. 189-202.

Barham P. et al. “Xen and the Art of Virtualization,” ACM SOSP.
Proceedings of the ACM Symposium on Operating Systems Prin-
ciples, ACM, US, vol. 37, No. 5, Oct. 19, 2003, pp. 164-177.

Krsul, I. et al. “VMPlants: Providing and Managing Virtual Machine
Execution Environments for Grid Computing,” Supercomputing,
2004, Proceedings of the ACM/IEEE SC2004 Conference Pitts-
burgh, PA, Nov. 6-12, 2004, pp. 7-7.

Dave Scott, “The Citrix Blog Log in Blogs Search Communities
Products Team Blogs Authors,” The Citrix Blog, May 6, 2011,
retrieved from Internet on Aug. 8,2014, http://blogs.citrix.com/2011/
05/06/xenserver-domain-0-32-or-64-bit/.

Michael Vrable et al., “Scalability, Fidelity, and Containment in the
Potemkin Virtual Honeyfarm,” ACM SIGOPS Operating Systems
Review, Oct. 20, 2005, pp. 148-162, retrieved from Internet on Aug.
7, 2014, http://portal.acm.org/citation.cfm?id=1095825.

* cited by examiner

U.S. Patent Dec. 29, 2015

Sheet 1 of 9

US 9,225,596 B2

101

WAN
105
:.\l
S|
|
i
PROCESSOR NETWORK INTERFACE d
RAM ROM INPUT/OUTPUT]
115
13 MEMORY
OPERATING SYSTEM TN
CONTROL LOGIC TN
103 OTHER APPLICATIONS TN
> TN
—
131 N o 129
DB2

N_ 117

N_ 119

123
125
127

121

U.S. Patent Dec. 29, 2015

Sheet 2 of 9 US 9,225,596 B2
/20
203~ || Processor 217 ~ Memory
. (/215
205 || RAM Operating System
207 || ROM 219 pata || N
C
. Input/ Applications
29 N\ Ouput | | b—-rd b | o - 206
Module
223 | o % .
LAN Interface(s) | | WAN Interface(s) 297 -
206n
-
\
\.
~— 200
/230
COMPUTER NETWORK

US 9,225,596 B2

Sheet 3 of 9

Dec. 29, 2015

I

9I¢ AJOWAN [eo1SAYJ 80¢ 90¢ 1413 |
(s)10s50001 (s)oorrog (sps1a |

Cle elemung [eo1sAyg [eo1sAyd [eo1sAyd |
I

|

(453 weIsAg uneled(
A
y
0¢ JosiaTedAH
F llllJ_ [!Illj_ P ||||J_
_ 087€ I q87¢ aoze ||| V8T€ voTe |
[| O Iossad01g D S1q | | &10sse001g g 3stg | | ¥ sosse001g A Rifq
_ [enyIA [enIIA | _ [eNMIA prp | ! LN remaa | !
_ A A “ _ A A “ _ A A “
\ 4 Y
“ A 4 A 4 _ “ L 4 v _ “ _
_ _ vze pwgsjoor | | |
q 150N
| laose SO | lvoge VS0P o - !
[_ 0Z¢ "801g [onu0)| |
! || || _
lozee _ ooumoewemua| lazee goumpmwemnal Iveee v oumorpy penua|
10€ 10AISS UOLIBZI[BNLILA

U.S. Patent

US 9,225,596 B2

Sheet 4 of 9

Dec. 29, 2015

U.S. Patent

a
uewa|3
3}IomiaN

0
wews|g

SJJOMIBN

g
ewe|g

SIOMION

v
wows|g

SJOMIBN

v "OId

a a
] |ES| (00
SIoMISN ==

o 0
uswe |3 obeiO)S @ @
SOMIBN

m m 5 i
swe|3 abeiolg > -
SOMIBN

v v v
uswse|g abeiolg @ %}
MOMIBN \

/ v A

A L T0¥
]

ecoy

US 9,225,596 B2

Sheet 5 of 9

Dec. 29, 2015

U.S. Patent

ww IE]
Uoled07 00s
abelojg ajoway)
0€s
A 7 uoHBWIOU|
9es A uoneinbiyuon
Janieg uojezijenuip
|
ves urewoq UIBWO(] 80IAIBS aJempleH
N Jseng pajenualagia
a01A9(
ananp < < soudey [V 118
ERIETCTEN| 919 8LS
_ 801A0Q
S | losiediy utewoq UIBLIO] SOIAI3S Bupomgen | |~ 048
| ¥ Jsang pejenualeyiq
i | 2018
i Il urewoq soneg | | < < N\ 80§
0cs \/s“ pejeuasaypun [| 91g 815 abeiojg
m ((((((((((((_ﬁ a91A8(
Nmnvm uiewtod Buisse00id N 905
975 Juswabeuep
l > > >
48 uonew.ou| v 05
uoneinbyuo)

™\ 204

U.S. Patent

600

Dec. 29, 2015 Sheet 6 of 9

Boot virtualization server
602

A 4

Create hypervisor and management domain
604

h 4

Initiate population of pool of undifferentiated service
domains
606

A 4

h 4

Create new service domain
608

A 4

Boot new service domain
610

\ 4

Pause boot sequence of new service domain at
trigger point to obtain undifferentiated service domain
612

Y

Add reference to undifferentiated service domain to
reference queue
614

A4
/ Create more undifferentiated
service domains?
616
[
N
v

Wait for request for service domain
618

FIG. 6

US 9,225,596 B2

U.S. Patent

700

Dec. 29, 2015 Sheet 7 of 9

Populate pool of undifferentiated service domains
102

A4

Wait for request for service domain
104

v
Request
N received?
706

i

Y
v

Identify service requested in service request
708

v
Write configuration information to shared storage
space

710

v
Query reference queue for reference to next available
undifferentiated service domain
712

v

Select one of the undifferentiated service domains
from the pool based on the reference
14

v
Unpause the boot sequence of the undifferentiated
service domain
716

{

h 4

US 9,225,596 B2

Access configuration information and complete initialization
and configuration as differentiated service domain

78

v
Associate the differentiated service domain with the
guest domain
720

FIG. 7

U.S. Patent Dec. 29, 2015 Sheet 8 of 9 US 9,225,596 B2

" . . Schedule execution of boot sequence at
Initiate boot sequence of new service domain .
02 > processing resources
- 804
v
. . - Execute basic boot initialization steps for service
Arrive at trigger point in boot sequence !
808 domain
- 806
Notify hypervisor that boot sequence has arrived Deschedule execution of boot sequence at
at trigger point » processing resource to pause boot sequence
810 812
R Wait for request for service domain
. i 814
N
| |
Request Do not schedule boot sequence of
received? “« undifferentiated service domain for execution
818 816

Y
Identify requested service and write
configuration information to storage location
820

!

Select undifferentiated service domain and call
hypervisor
822

v

Schedule execution of boot sequence at
processing resources to unpause boot sequence
824

)

Retrieve configuration information
826

Finish boot sequence based on configuration
info. to obtain differentiated service domain
828

h 4

800 FIG. 8

U.S. Patent

Dec. 29, 2015

Sheet 9 of 9

US 9,225,596 B2

Convert undifferentiated service domain to

differentiated service domain
902

Y
Assess size of undifferentiated service domain

pool
904
) Needs
\gv;t «——N replenishing?
208 / 506
|
Y
v
Wait Assess usage of processing resources
916 910
A
y
Schedule creation of new Usage below
undifferentiated service domain €N threshold?
914 912
|
Y
v
Create new undifferentiated service domain
918

N

Add reference to new undifferentiated service
domain to reference queue
920

900

FIG. 9

US 9,225,596 B2

1
UNDIFFERENTIATED SERVICE DOMAINS

FIELD OF THE INVENTION

Aspects described herein generally relate to server virtual-
ization. More specifically, various aspects provide
approaches to server virtualization in which services are dis-
aggregated among multiple service domains.

BACKGROUND OF THE INVENTION

Virtualization is an increasing trend in the field of infor-
mation technology to enable new topologies for data center
automation, cloud-class infrastructure, software-as-a-ser-
vice, and the like. Virtualization refers to a method of
abstracting physical aspects of the physical infrastructure
from the particular environments the infrastructure is charged
with hosting, e.g., applications, desktops, servers, storage,
networks, and other types of computing resources.

One example of virtualization is the abstraction of server-
class operating systems from the hardware on which those
operating systems run through the use of an intermediate
software layer, e.g., a middleware layer. This type of virtual-
ization may be referred to as server virtualization, in which
server-class operating systems run as instances of virtual
machines. Server virtualization enables server operating sys-
tems running as instances of virtual machines (“virtual serv-
ers”) to be isolated from the hardware of the physical server
(“host machine™).

A host machine may employ a hypervisor to manage the
multiple virtual servers operating at the host machine. The
hypervisor may create instances of the virtual servers and
manage their operation. As an example, the hypervisor may
be responsible for memory management and processor
scheduling. The hypervisor may also be responsible for cre-
ating the virtual machine that has direct access to the hard-
ware of the host machine. A virtual machine having direct
access to the physical hardware of the host machine may be
referred to as a privileged virtual machine. Virtual machines
that do not have direct access to the physical hardware of the
host machine may be referred to as unprivileged virtual
machines. Unprivileged virtual machines may obtain indirect
access to the hardware of the host machine via the privileged
virtual machine.

In conventional practice, services available to the unprivi-
leged virtual machines may be aggregated at the privileged
virtual machine such that the privileged virtual machine may
provide all of the services utilized by the unprivileged virtual
machines. As the demand for services increases, however, the
privileged virtual machine may become overloaded resulting
in diminished performance and a reduced ability to effec-
tively provide those services. Attempts to improve the perfor-
mance of the privileged virtual machine by adding additional
processing or memory resources may be unsuccessful due to
diminishing returns. As a result, the scalability of conven-
tional virtualization implementations may be limited. There-
fore, a need exists for an approach to server virtualization that
addresses the issues identified above.

BRIEF SUMMARY OF THE INVENTION

The following presents a simplified summary of various
aspects described herein. This summary is not an extensive
overview, and is not intended to identify key or critical ele-
ments or to delineate the scope of the claims. The following

10

15

20

25

30

35

40

45

50

55

60

65

2

summary merely presents some concepts in a simplified form
as an introductory prelude to the more detailed description
provided below.

To overcome limitations in the prior art described above,
and to overcome other limitations that will be apparent upon
reading and understanding the present specification, aspects
described herein are directed toward approaches for provid-
ing server virtualization.

Multiple guest domains (virtual machines) may execute at
a virtualization server. During execution, the guest domains
may indicate a need for various services to facilitate their
operation. The virtualization server may disaggregate the
various services utilized by the guest domains among various
service domains. A service domain may be configured to
provide one of the services. In order to minimize the time
required to boot and configure a service domain, the virtual-
ization server may maintain a pool of partially initialized
service domains. When a guest domain needs a particular
service, one of the partially initialized service domains may
be selected from the pool, and the partially initialized service
domain may complete initialization to become an initialized
service domain. Additionally, the initialized service domain
may be configured to provide the service to the guest domain.
The virtualization server may periodically replenish the pool
of partially initialized service domains to ensure that a par-
tially initialized service domain is available upon demand
from one of the guest domains.

A first aspect described herein provides a method for pro-
viding server virtualization. A set of partially initialized ser-
vice domains may be generated, and a request for a service
may be received. One of the partially initialized service
domains may be selected in response to receipt of the request
forthe service. Initialization of the partially initialized service
domain may be completed in order obtain an initialized ser-
vice domain. The service domain may be configured to pro-
vide the service requested.

A second aspect described herein provides an apparatus for
providing services in a virtualized environment. The appara-
tus may include a set of partially initialized service domains.
A management domain may select and provide configuration
information to one of the partially initialized service domains.
A hypervisor may be configured to schedule execution of the
partially initialized service domain in order to complete ini-
tialization based on the configuration information, which
may transform the partially initialized service domain into an
initialized service domain. The initialized service domain
may be configured to provide the service to a guest domain.

Some aspects described herein provide a queue of refer-
ences respectively corresponding to the set of partially ini-
tialized service domains. References corresponding to par-
tially initialized service domains selected to become
initialized service domains may be removed from the queue,
and references corresponding to new partially initialized ser-
vice domains may be added to the queue.

Additional aspects described herein provide that a partially
initialized service domain may be obtained by pausing a boot
sequence of the partially initialized service domain. The par-
tially initialized service domain may notify the hypervisor
when the boot sequence reaches a trigger point, and the hyper-
visor may pause the boot sequence in response. In a paused
state, the partially initialized service domain does not utilize
a processing resource, whereas in an unpaused state, the
partially initialized service domain does utilize a processing
resource. The partially initialized service domain may access
configuration information when unpaused and complete ini-
tialization based on the configuration information. The con-
figuration information may be an initialization script or key-

US 9,225,596 B2

3

value pairings stored locally or remotely relative to the
partially initialized service domain.

Further aspects described herein provide that the initialized
service domain may be a software service domain, a hardware
service domain, or acombined hardware and software service
domain. The initialized service domain may provide a service
to one or multiple guest domains. The initialized service
domain may also manage access to one or multiple hardware
devices.

Additional aspects will be appreciated with the benefit of
the disclosures set forth in further detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of aspects described
herein and the advantages thereof may be acquired by refer-
ring to the following description in consideration of the
accompanying drawings, in which like reference numbers
indicate like features, and wherein:

FIG. 1 depicts an illustrative computer system architecture
that may be used in accordance with one or more illustrative
aspects described herein.

FIG. 2 depicts an illustrative remote-access system archi-
tecture that may be used in accordance with one or more
illustrative aspects described herein.

FIG. 3 depicts an illustrative virtualized (hypervisor) sys-
tem architecture that may be used in accordance with one or
more illustrative aspects described herein.

FIG. 4 depicts an illustrative cloud-based system architec-
ture that may be used in accordance with one or more illus-
trative aspects described herein.

FIG. 5 depicts an illustrative server virtualization system
having undifferentiated service domains.

FIG. 6 depicts a flowchart of example method steps for
initializing a pool of undifferentiated service domains.

FIG. 7 depicts a flowchart of example method steps for
responding to a need for a service at a guest domain.

FIG. 8 depicts a flowchart of example method steps for
pausing and unpausing an undifferentiated service domain.

FIG. 9 depicts a flowchart of example methods steps for
replenishing a pool of undifferentiated service domains.

DETAILED DESCRIPTION OF THE INVENTION

In the following description of the various embodiments,
reference is made to the accompanying drawings identified
above and which form a part hereof, and in which is shown by
way of illustration various embodiments in which aspects
described herein may be practiced. It is to be understood that
other embodiments may be utilized and structural and func-
tional modifications may be made without departing from the
scope described herein. Various aspects are capable of other
embodiments and of being practiced or being carried out in
various different ways.

As a general introduction to the subject matter described in
more detail below, aspects described herein provide
approaches to server virtualization. Guest domains (virtual
machines) may execute at a virtualization server. During
execution, the guest domains may have need of various ser-
vices to facilitate their operation. The virtualization server
may disaggregate the services utilized by the guest domains
among various service domains. A service domain may be
configured to provide one of the services. The virtualization
server may also maintain a pool of partially initialized service
domains. When a guest domain has need of a particular ser-
vice, one of the partially initialized service domains may be
selected from the pool, and the partially initialized service

10

15

20

25

30

35

40

45

50

55

60

65

4

domain may be transformed into an initialized service
domain by completing initialization. Completing initializa-
tion may include configuring the initialized service domain to
provide a service utilized by a guest domain. The initialized
service domain may thus be configured to provide the service
to the guest domain. The virtualization server may periodi-
cally replenish the pool of partially initialized service
domains to ensure that a partially initialized service domain is
available upon demand from one of the guest domains.

Itis to be understood that the phraseology and terminology
used herein are for the purpose of description and should not
be regarded as limiting. Rather, the phrases and terms used
herein are to be given their broadest interpretation and mean-
ing. The use of “including” and “comprising” and variations
thereof is meant to encompass the items listed thereafter and
equivalents thereof as well as additional items and equiva-
lents thereof. The use of the terms “mounted,” “connected,”
“coupled,” “positioned,” “engaged” and similar terms, is
meant to include both direct and indirect mounting, connect-
ing, coupling, positioning and engaging.

Computing Architecture

Computer software, hardware, and networks may be uti-
lized in a variety of different system environments, including
standalone, networked, remote-access (aka, remote desktop),
virtualized, and/or cloud-based environments, among others.
FIG. 1 illustrates one example of a system architecture and
data processing device that may be used to implement one or
more illustrative aspects of the disclosure in a standalone
and/or networked environment. Various network nodes 103,
105, 107, and 109 may be interconnected via a wide area
network (WAN) 101, such as the Internet. Other networks
may also or alternatively be used, including private intranets,
corporate networks, [LANs, metropolitan area networks
(MAN) wireless networks, personal networks (PAN), and the
like. Network 101 is for illustration purposes and may be
replaced with fewer or additional computer networks. A local
area network (LAN) may have one or more of any known
LAN topology and may use one or more of a variety of
different protocols, such as Ethernet. Devices 103, 105, 107,
109 and other devices (not shown) may be connected to one or
more of the networks via twisted pair wires, coaxial cable,
fiber optics, radio waves or other communication media.

The term “network™ as used herein and depicted in the
drawings refers not only to systems in which remote storage
devices are coupled together via one or more communication
paths, but also to stand-alone devices that may be coupled,
from time to time, to such systems that have storage capabil-
ity. Consequently, the term “network™ includes not only a
“physical network™ but also a “content network,” which is
comprised of the data—attributable to a single entity—which
resides across all physical networks.

The components may include data server 103, web server
105, and client computers 107, 109. Data server 103 provides
overall access, control and administration of databases and
control software for performing one or more illustrative
aspects of the disclosures as described herein. Data server 103
may be connected to web server 105 through which users
interact with and obtain data as requested. Alternatively, data
server 103 may act as a web server itself and be directly
connected to the Internet. Data server 103 may be connected
to web server 105 through the network 101 (e.g., the Internet),
via direct or indirect connection, or via some other network.
Users may interact with the data server 103 using remote
computers 107, 109, e.g., using a web browser to connect to
the data server 103 via one or more externally exposed web
sites hosted by web server 105. Client computers 107, 109
may be used in concert with data server 103 to access data

US 9,225,596 B2

5

stored therein, or may be used for other purposes. For
example, from client device 107 a user may access web server
105 using an Internet browser, as is known in the art, or by
executing a software application that communicates with web
server 105 and/or data server 103 over a computer network
(such as the Internet).

Servers and applications may be combined on the same
physical machines, and retain separate virtual or logical
addresses, or may reside on separate physical machines. FIG.
1 illustrates just one example of a network architecture that
may be used, and those of skill in the art will appreciate that
the specific network architecture and data processing devices
used may vary, and are secondary to the functionality that
they provide, as further described herein. For example, ser-
vices provided by web server 105 and data server 103 may be
combined on a single server.

Each component 103, 105, 107, 109 may be any type of
known computer, server, or data processing device. Data
server 103, e.g., may include a processor 111 controlling
overall operation of the rate server 103. Data server 103 may
further include RAM 113, ROM 115, network interface 117,
input/output interfaces 119 (e.g., keyboard, mouse, display,
printer, etc.), and memory 121. I/O 119 may include a variety
of interface units and drives for reading, writing, displaying,
and/or printing data or files. Memory 121 may further store
operating system software 123 for controlling overall opera-
tion of the data processing device 103, control logic 125 for
instructing data server 103 to perform aspects of the disclo-
sure as described herein, and other application software 127
providing secondary, support, and/or other functionality
which may or may not be used in conjunction with aspects of
the present disclosure. The control logic may also be referred
to herein as the data server software 125. Functionality of the
data server software may refer to operations or decisions
made automatically based on rules coded into the control
logic, made manually by a user providing input into the sys-
tem, and/or a combination of automatic processing based on
user input (e.g., queries, data updates, etc.).

Memory 121 may also store data used in performance of
one or more aspects of the disclosure, including a first data-
base 129 and a second database 131. In some embodiments,
the first database may include the second database (e.g., as a
separate table, report, etc.). That is, the information can be
stored in a single database, or separated into different logical,
virtual, or physical databases, depending on system design.
Devices 105,107, 109 may have similar or different architec-
ture as described with respect to device 103. Those of skill in
the art will appreciate that the functionality of data processing
device 103 (or device 105,107, 109) as described herein may
be spread across multiple data processing devices, for
example, to distribute processing load across multiple com-
puters, to segregate transactions based on geographic loca-
tion, user access level, quality of service (QoS), etc.

One or more aspects may be embodied in computer-usable
or readable data and/or computer-executable instructions,
such as in one or more program modules, executed by one or
more computers or other devices as described herein. Gener-
ally, program modules include routines, programs, objects,
components, data structures, etc. that perform particular tasks
or implement particular abstract data types when executed by
a processor in a computer or other device. The modules may
be written in a source code programming language that is
subsequently compiled for execution, or may be written in a
scripting language such as (but not limited to) HTML or
XML. The computer executable instructions may be stored
on a computer readable medium such as a nonvolatile storage
device. Any suitable computer readable storage media may be

10

15

20

25

30

35

40

45

50

55

60

65

6

utilized, including hard disks, CD-ROMs, optical storage
devices, magnetic storage devices, and/or any combination
thereof. In addition, various transmission (non-storage)
media representing data or events as described herein may be
transferred between a source and a destination in the form of
electromagnetic waves traveling through signal-conducting
media such as metal wires, optical fibers, and/or wireless
transmission media (e.g., air and/or space). Various aspects
described herein may be embodied as a method, a data pro-
cessing system, or a computer program product. Therefore,
various functionality may be embodied in whole or in part in
software, firmware and/or hardware or hardware equivalents
such as integrated circuits, field programmable gate arrays
(FPGA), and the like. Particular data structures may be used
to more effectively implement one or more aspects of the
disclosure, and such data structures are contemplated within
the scope of computer executable instructions and computer-
usable data described herein.

With further reference to FIG. 2, one or more aspects
described herein may be implemented in a remote-access
environment. FIG. 2 depicts an example system architecture
including a generic computing device 201 in an illustrative
computing environment 200 that may be used according to
one or more illustrative aspects described herein. Generic
computing device 201 may be used as a server 206 in a
single-server or multi-server desktop virtualization system
(e.g., a remote access or cloud system) configured to provide
virtual machines for client access devices. The generic com-
puting device 201 may have a processor 203 for controlling
overall operation of the server and its associated components,
including random access memory (RAM) 205, read-only
memory (ROM) 207, input/output (I/O) module 209, and
memory 215.

1/0 module 209 may include a mouse, keypad, touch
screen, scannet, optical reader, and/or stylus (or other input
device(s)) through which a user of generic computing device
201 may provide input, and may also include one or more of
a speaker for providing audio output and a video display
device for providing textual, audiovisual, and/or graphical
output. Software may be stored within memory 215 and/or
other storage to provide instructions to processor 203 for
configuring generic computing device 201 into a special pur-
pose computing device in order to perform various functions
as described herein. For example, memory 215 may store
software used by the computing device 201, such as an oper-
ating system 217, application programs 219, and an associ-
ated database 221.

Computing device 201 may operate in a networked envi-
ronment supporting connections to one or more remote com-
puters, such as terminals 240 (also referred to as client
devices). The terminals 240 may be personal computers,
mobile devices, laptop computers, tablets, or servers that
include many or all of the elements described above with
respect to the generic computing device 103 or 201. The
network connections depicted in FIG. 2 include a local area
network (LLAN) 225 and a wide area network (WAN) 229, but
may also include other networks. When used in a LAN net-
working environment, computing device 201 may be con-
nected to the LAN 225 through a network interface or adapter
223. When used in a WAN networking environment, comput-
ing device 201 may include a modem 227 or other wide area
network interface for establishing communications over the
WAN 229, such as computer network 230 (e.g., the Internet).
It will be appreciated that the network connections shown are
illustrative and other means of establishing a communica-
tions link between the computers may be used. Computing
device 201 and/or terminals 240 may also be mobile terminals

US 9,225,596 B2

7

(e.g., mobile phones, smartphones, PDAs, notebooks, etc.)
including various other components, such as a battery,
speaker, and antennas (not shown).

Aspects described herein may also be operational with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Examples of
other computing systems, environments, and/or configura-
tions that may be suitable for use with aspects described
herein include, but are not limited to, personal computers,
server computers, hand-held or laptop devices, multiproces-
sor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, network PCs, mini-
computers, mainframe computers, distributed computing
environments that include any of the above systems or
devices, and the like.

As shown in FIG. 2, one or more client devices 240 may be
in communication with one or more servers 206a-206# (gen-
erally referred to herein as “server(s) 206”). In one embodi-
ment, the computing environment 200 may include a network
appliance installed between the server(s) 206 and client
machine(s) 240. The network appliance may manage client/
server connections, and in some cases can load balance client
connections amongst a plurality of backend servers 206.

The client machine(s) 240 may in some embodiments be
referred to as a single client machine 240 or a single group of
client machines 240, while server(s) 206 may be referred to as
a single server 206 or a single group of servers 206. In one
embodiment a single client machine 240 communicates with
more than one server 206, while in another embodiment a
single server 206 communicates with more than one client
machine 240. In yet another embodiment, a single client
machine 240 communicates with a single server 206.

A client machine 240 can, in some embodiments, be ref-
erenced by any one of the following non-exhaustive terms:
client machine(s); client(s); client computer(s); client
device(s); client computing device(s); local machine; remote
machine; client node(s); endpoint(s); or endpoint node(s).
The server 206, in some embodiments, may be referenced by
any one of the following non-exhaustive terms: server(s),
local machine; remote machine; server farm(s), or host com-
puting device(s).

In one embodiment, the client machine 240 may be a
virtual machine. The virtual machine may be any virtual
machine, while in some embodiments the virtual machine
may be any virtual machine managed by a Type 1 or Type 2
hypervisor, for example, a hypervisor developed by Citrix
Systems, IBM, VMware, or any other hypervisor. In some
aspects, the virtual machine may be managed by a hypervisor,
while in aspects the virtual machine may be managed by a
hypervisor executing on a server 206 or a hypervisor execut-
ing on a client 240.

Some embodiments include a client device 240 that dis-
plays application output generated by an application remotely
executing on a server 206 or other remotely located machine.
In these embodiments, the client device 240 may execute a
virtual machine receiver program or application to display the
output in an application window, a browser, or other output
window. In one example, the application is a desktop, while in
other examples the application is an application that gener-
ates or presents a desktop. A desktop may include a graphical
shell providing a user interface for an instance of an operating
system in which local and/or remote applications can be
integrated. Applications, as used herein, are programs that
execute after an instance of an operating system (and, option-
ally, also the desktop) has been loaded.

The server 206, in some embodiments, uses a remote pre-
sentation protocol or other program to send data to a thin-

10

15

20

25

30

35

40

45

50

55

60

65

8

client or remote-display application executing on the client to
present display output generated by an application executing
on the server 206. The thin-client or remote-display protocol
can be any one of the following non-exhaustive list of proto-
cols: the Independent Computing Architecture (ICA) proto-
col developed by Citrix Systems, Inc. of Ft. Lauderdale, Fla.;
or the Remote Desktop Protocol (RDP) manufactured by the
Microsoft Corporation of Redmond, Wash.

A remote computing environment may include more than
one server 206a-2067 such that the servers 206a-2067 are
logically grouped together into a server farm 206, for
example, in a cloud computing environment. The server farm
206 may include servers 206 that are geographically dis-
persed while and logically grouped together, or servers 206
that are located proximate to each other while logically
grouped together. Geographically dispersed servers 206a-
2067 within a server farm 206 can, in some embodiments,
communicate using a WAN (wide), MAN (metropolitan), or
LAN (local), where different geographic regions can be char-
acterized as: different continents; different regions of a con-
tinent; different countries; different states; different cities;
different campuses; different rooms; or any combination of
the preceding geographical locations. In some embodiments
the server farm 206 may be administered as a single entity,
while in other embodiments the server farm 206 can include
multiple server farms.

In some embodiments, a server farm may include servers
206 that execute a substantially similar type of operating
system platform (e.g.,, WINDOWS, UNIX, LINUX, iOS,
ANDROID, SYMBIAN, etc.). In other embodiments, server
farm 206 may include a first group of one or more servers that
execute a first type of operating system platform, and a second
group of one or more servers that execute a second type of
operating system platform.

Server 206 may be configured as any type of server, as
needed, e.g., a file server, an application server, a web server,
aproxy server, an appliance, a network appliance, a gateway,
an application gateway, a gateway server, a virtualization
server, a deployment server, a SSL. VPN server, a firewall, a
web server, an application server or as a master application
server, a server executing an active directory, or a server
executing an application acceleration program that provides
firewall functionality, application functionality, or load bal-
ancing functionality. Other server types may also be used.

Some embodiments include afirst server 2064 that receives
requests from a client machine 240, forwards the request to a
second server 2065, and responds to the request generated by
the client machine 240 with a response from the second server
206b. First server 106a may acquire an enumeration of appli-
cations available to the client machine 240 and well as address
information associated with an application server 206 hosting
an application identified within the enumeration of applica-
tions. First server 206a can then present a response to the
client’s request using a web interface, and communicate
directly with the client 240 to provide the client 240 with
access to an identified application. One or more clients 240
and/or one or more servers 206 may transmit data over net-
work 230, e.g., network 101.

FIG. 2 shows a high-level architecture of an illustrative
desktop virtualization system. As shown, the desktop virtu-
alization system may be single-server or multi-server system,
or cloud system, including at least one virtualization server
206 configured to provide virtual desktops and/or virtual
applications to one or more client access devices 240. As used
herein, a desktop refers to a graphical environment or space in
which one or more applications may be hosted and/or
executed. A desktop may include a graphical shell providing

US 9,225,596 B2

9

a user interface for an instance of an operating system in
which local and/or remote applications can be integrated.
Applications may include programs that execute after an
instance of an operating system (and, optionally, also the
desktop) has been loaded. Each instance of the operating
system may be physical (e.g., one operating system per
device) or virtual (e.g., many instances of an OS running on a
single device). Each application may be executed on a local
device, or executed on a remotely located device (e.g.,
remoted).

With further reference to FIG. 3, a computer device 301
may be configured as a virtualization server in a virtualization
environment, for example, a single-server, multi-server, or
cloud computing environment. Virtualization server 301
illustrated in FIG. 3 can be deployed as and/or implemented
by one or more embodiments of the server 206 illustrated in
FIG. 2 or by other known computing devices. Included in
virtualization server 301 is a hardware layer that can include
one or more physical disks 304, one or more physical devices
306, one or more physical processors 308 and one or more
physical memories 316. In some embodiments, firmware 312
can be stored within a memory element in the physical
memory 316 and can be executed by one or more of the
physical processors 308. Virtualization server 301 may fur-
ther include an operating system 314 that may be stored in a
memory element in the physical memory 316 and executed by
one or more of the physical processors 308. Still further, a
hypervisor 302 may be stored in a memory element in the
physical memory 316 and can be executed by one or more of
the physical processors 308.

Executing on one or more of the physical processors 308
may be one or more virtual machines 332A-C (generally
332). Each virtual machine 332 may have a virtual disk
326A-C and a virtual processor 328A-C. In some embodi-
ments, a first virtual machine 332A may execute, using a
virtual processor 328 A, a control program 320 that includes a
tools stack 324. Control program 320 may be referred to as a
control virtual machine, DomO, Domain 0, or other virtual
machine used for system administration and/or control. In
some embodiments, one or more virtual machines 332B-C
can execute, using a virtual processor 328B-C, a guest oper-
ating system 330A-B.

Virtualization server 301 may include a hardware layer 310
with one or more pieces of hardware that communicate with
the virtualization server 301. In some embodiments, the hard-
ware layer 310 can include one or more physical disks 304,
one or more physical devices 306, one or more physical
processors 308, and one or more memory 316. Physical com-
ponents 304, 306, 308, and 316 may include, for example, any
of the components described above. Physical devices 306
may include, for example, a network interface card, a video
card, a keyboard, a mouse, an input device, a monitor, a
display device, speakers, an optical drive, a storage device, a
universal serial bus connection, a printer, a scanner, a network
element (e.g., router, firewall, network address translator,
load balancer, virtual private network (VPN) gateway,
Dynamic Host Configuration Protocol (DHCP) router, etc.),
or any device connected to or communicating with virtual-
ization server 301. Physical memory 316 in the hardware
layer 310 may include any type of memory. Physical memory
316 may store data, and in some embodiments may store one
or more programs, or set of executable instructions. FIG. 3
illustrates an embodiment where firmware 312 is stored
within the physical memory 316 of virtualization server 301.
Programs or executable instructions stored in the physical
memory 316 can be executed by the one or more processors
308 of virtualization server 301.

10

20

30

40

45

55

10

Virtualization server 301 may also include a hypervisor
302. In some embodiments, hypervisor 302 may be a program
executed by processors 308 on virtualization server 301 to
create and manage any number of virtual machines 332.
Hypervisor 302 may be referred to as a virtual machine moni-
tor, or platform virtualization software. In some embodi-
ments, hypervisor 302 can be any combination of executable
instructions and hardware that monitors virtual machines
executing on a computing machine. Hypervisor 302 may be
Type 2 hypervisor, where the hypervisor that executes within
an operating system 314 executing on the virtualization
server 301. Virtual machines then execute at a level above the
hypervisor. In some embodiments, the Type 2 hypervisor
executes within the context of a user’s operating system such
that the Type 2 hypervisor interacts with the user’s operating
system. In other embodiments, one or more virtualization
servers 201 in a virtualization environment may instead
include a Type 1 hypervisor (Not Shown). A Type 1 hypervi-
sor may execute on the virtualization server 301 by directly
accessing the hardware and resources within the hardware
layer 310. That is, while a Type 2 hypervisor 302 accesses
system resources through a host operating system 314, as
shown, a Type 1 hypervisor may directly access all system
resources without the host operating system 314. A Type 1
hypervisor may execute directly on one or more physical
processors 308 of virtualization server 301, and may include
program data stored in the physical memory 316.

Hypervisor 302, in some embodiments, can provide virtual
resources to operating systems 330 or control programs 320
executing on virtual machines 332 in any manner that simu-
lates the operating systems 330 or control programs 320
having direct access to system resources. System resources
can include, but are not limited to, physical devices 306,
physical disks 304, physical processors 308, physical
memory 316 and any other component included in virtualiza-
tion server 301 hardware layer 310. Hypervisor 302 may be
used to emulate virtual hardware, partition physical hard-
ware, virtualize physical hardware, and/or execute virtual
machines that provide access to computing environments. In
still other embodiments, hypervisor 302 controls processor
scheduling and memory partitioning for a virtual machine
332 executing on virtualization server 301. Hypervisor 302
may include those manufactured by VMWare, Inc., of Palo
Alto, Calif.; the XEN hypervisor, an open source product
whose development was previously overseen by the open
source Xen.org community and is presently overseen by the
Linux Foundation; HyperV, VirtualServer or virtual PC
hypervisors provided by Microsoft; Kernel-based Virtual
Machine (KVM) for the Linux kernel; or others. In some
embodiments, virtualization server 301 executes a hypervisor
302 that creates a virtual machine platform on which guest
operating systems may execute. In these embodiments, the
virtualization server 301 may be referred to as a host server.
An example of such a virtualization server is the XEN
SERVER provided by Citrix Systems, Inc., of Fort Lauder-
dale, Fla.

Hypervisor 302 may create one or more virtual machines
332B-C (generally 332) in which guest operating systems
330 execute. In some embodiments, hypervisor 302 may load
a virtual machine image to create a virtual machine 332. In
other embodiments, the hypervisor 302 may executes a guest
operating system 330 within virtual machine 332. In still
other embodiments, virtual machine 332 may execute guest
operating system 330.

In addition to creating virtual machines 332, hypervisor
302 may control the execution of at least one virtual machine
332. In other embodiments, hypervisor 302 may presents at

US 9,225,596 B2

11

least one virtual machine 332 with an abstraction of at least
one hardware resource provided by the virtualization server
301 (e.g., any hardware resource available within the hard-
ware layer 310). In other embodiments, hypervisor 302 may
control the manner in which virtual machines 332 access
physical processors 308 available in virtualization server 301.
Controlling access to physical processors 308 may include
determining whether a virtual machine 332 should have
access to a processor 308, and how physical processor capa-
bilities are presented to the virtual machine 332.

As shown in FIG. 3, virtualization server 301 may host or
execute one or more virtual machines 332. A virtual machine
332 is a set of executable instructions that, when executed by
aprocessor 308, imitate the operation of a physical computer
such that the virtual machine 332 can execute programs and
processes much like a physical computing device. While FIG.
3 illustrates an embodiment where a virtualization server 301
hosts three virtual machines 332, in other embodiments vir-
tualization server 301 can host any number of virtual
machines 332. Hypervisor 302, in some embodiments, pro-
vides each virtual machine 332 with a unique virtual view of
the physical hardware, memory, processor and other system
resources available to that virtual machine 332. In some
embodiments, the unique virtual view can be based on one or
more of virtual machine permissions, application of a policy
engine to one or more virtual machine identifiers, a user
accessing a virtual machine, the applications executing on a
virtual machine, networks accessed by a virtual machine, or
any other desired criteria. For instance, hypervisor 302 may
create one or more non-privileged virtual machines 332 and
one or more privileged virtual machines 332. Non-privileged
virtual machines 332 may be prevented from accessing
resources, hardware, memory locations, and programs that
secure virtual machines 332 may be permitted to access. In
other embodiments, hypervisor 302 may provide each virtual
machine 332 with a substantially similar virtual view of the
physical hardware, memory, processor and other system
resources available to the virtual machines 332.

Each virtual machine 332 may include a virtual disk
326A-C (generally 326) and a virtual processor 328 A-C (gen-
erally 328.) The virtual disk 326, in some embodiments, is a
virtualized view of one or more physical disks 304 of the
virtualization server 301, or a portion of one or more physical
disks 304 of the virtualization server 301. The virtualized
view of the physical disks 304 can be generated, provided and
managed by the hypervisor 302. In some embodiments,
hypervisor 302 provides each virtual machine 332 with a
unique view of the physical disks 304. Thus, in these embodi-
ments, the particular virtual disk 326 included in each virtual
machine 332 can be unique when compared with the other
virtual disks 326.

A virtual processor 328 can be a virtualized view of one or
more physical processors 308 of the virtualization server 301.
In some embodiments, the virtualized view of the physical
processors 308 can be generated, provided and managed by
hypervisor 302. In some embodiments, virtual processor 328
has substantially all of the same characteristics of at least one
physical processor 308. In other embodiments, virtual pro-
cessor 308 provides a modified view of physical processors
308 such that at least some of the characteristics of the virtual
processor 328 are different than the characteristics of the
corresponding physical processor 308.

With further reference to FIG. 4, some aspects described
herein may be implemented in a cloud-based environment.
FIG. 4 illustrates an example of a cloud computing environ-
ment (or cloud system) 400. As seen in FIG. 4, client com-
puters 411-414 may communicate with a cloud management

10

15

20

25

30

35

40

45

50

55

60

65

12

server 410 to access the computing resources (e.g., host serv-
ers 403, storage resources 404, and network resources 405) of
the cloud system.

Management server 410 may be implemented on one or
more physical servers. The management server 410 may run,
for example, CLOUDSTACK by Citrix Systems, Inc. of Ft.
Lauderdale, Fla., or OPENSTACK, among others. Manage-
ment server 410 may manage various computing resources,
including cloud hardware and software resources, for
example, host computers 403, data storage devices 404, and
networking devices 405. The cloud hardware and software
resources may include private and/or public components. For
example, a cloud may be configured as a private cloud to be
used by one or more particular customers or client computers
411-414 and/or over a private network. In other embodi-
ments, public clouds or hybrid public-private clouds may be
used by other customers over an open or hybrid networks.

Management server 410 may be configured to provide user
interfaces through which cloud operators and cloud custom-
ers may interact with the cloud system. For example, the
management server 410 may provide a set of APIs and/or one
or more cloud operator console applications (e.g., web-based
on standalone applications) with user interfaces to allow
cloud operators to manage the cloud resources, configure the
virtualization layer, manage customer accounts, and perform
other cloud administration tasks. The management server 410
also may include a set of APIs and/or one or more customer
console applications with user interfaces configured to
receive cloud computing requests from end users via client
computers 411-414, for example, requests to create, modify,
or destroy virtual machines within the cloud. Client comput-
ers 411-414 may connect to management server 410 via the
Internet or other communication network, and may request
access to one or more of the computing resources managed by
management server 410. In response to client requests, the
management server 410 may include a resource manager
configured to select and provision physical resources in the
hardware layer of the cloud system based on the client
requests. For example, the management server 410 and addi-
tional components of the cloud system may be configured to
provision, create, and manage virtual machines and their
operating environments (e.g., hypervisors, storage resources,
services offered by the network elements, etc.) for customers
at client computers 411-414, over a network (e.g., the Inter-
net), providing customers with computational resources, data
storage services, networking capabilities, and computer plat-
form and application support. Cloud systems also may be
configured to provide various specific services, including
security systems, development environments, user interfaces,
and the like.

Certain clients 411-414 may be related, for example, dif-
ferent client computers creating virtual machines on behalf of
the same end user, or different users affiliated with the same
company or organization. In other examples, certain clients
411-414 may be unrelated, such as users affiliated with dif-
ferent companies or organizations. For unrelated clients,
information on the virtual machines or storage of any one user
may be hidden from other users.

Referring now to the physical hardware layer of a cloud
computing environment, availability zones 401-402 (or
zones) may refer to a collocated set of physical computing
resources. Zones may be geographically separated from other
zones in the overall cloud of computing resources. For
example, zone 401 may be a first cloud datacenter located in
California, and zone 402 may be a second cloud datacenter
located in Florida. Management sever 410 may be located at
one of the availability zones, or at a separate location. Each

US 9,225,596 B2

13

zone may include an internal network that interfaces with
devices that are outside of the zone, such as the management
server 410, through a gateway. End users of the cloud (e.g.,
clients 411-414) might or might not be aware of the distinc-
tions between zones. For example, an end user may request
the creation of a virtual machine having a specified amount of
memory, processing power, and network capabilities. The
management server 410 may respond to the user’s request and
may allocate the resources to create the virtual machine with-
out the user knowing whether the virtual machine was created
using resources from zone 401 or zone 402. In other
examples, the cloud system may allow end users to request
that virtual machines (or other cloud resources) are allocated
in a specific zone or on specific resources 403-405 within a
zone.

In this example, each zone 401-402 may include an
arrangement of various physical hardware components (or
computing resources) 403-405, for example, physical hosting
resources (or processing resources), physical network
resources, physical storage resources, switches, and addi-
tional hardware resources that may be used to provide cloud
computing services to customers. The physical hosting
resources in a cloud zone 401-402 may include one or more
computer servers 403, such as the virtualization servers 301
described above, which may be configured to create and host
virtual machine instances. The physical network resources in
a cloud zone 401 or 402 may include one or more network
elements 405 (e.g., network service providers) comprising
hardware and/or software configured to provide a network
service to cloud customers, such as firewalls, network address
translators, load balancers, virtual private network (VPN)
gateways, Dynamic Host Configuration Protocol (DHCP)
routers, and the like. The storage resources in the cloud zone
401-402 may include storage disks (e.g., solid state drives
(SSDs), magnetic hard disks, etc.) and other storage devices.

The example cloud computing environment shown in FIG.
4 also may include a virtualization layer (e.g., as shown in
FIGS. 1-3) with additional hardware and/or software
resources configured to create and manage virtual machines
and provide other services to customers using the physical
resources in the cloud. The virtualization layer may include
hypervisors, as described above in FIG. 3, along with other
components to provide network virtualizations, storage vir-
tualizations, etc. The virtualization layer may be as a separate
layer from the physical resource layer, or may share some or
all of the same hardware and/or software resources with the
physical resource layer. For example, the virtualization layer
may include a hypervisor installed in each of the virtualiza-
tion servers 403 with the physical computing resources.
Known cloud systems may alternatively be used, e.g., WIN-
DOWS AZURE (Microsoft Corporation of Redmond Wash.),
AMAZON EC2 (Amazon.com Inc. of Seattle, Wash.), IBM
BLUE CLOUD (IBM Corporation of Armonk, N.Y.), or oth-
ers.

Disaggregating Service Domains

Referring to FIG. 5, an illustrative example of a server
virtualization system 500 having partially initialized service
domains is shown. As described above, the server virtualiza-
tion system 500 may include a virtualization server 502. The
virtualization server 502 may be similar in many respects to
the virtualization server 301 in FIG. 3. The virtualization
server may include physical hardware 504 that includes one
or more processing devices 506, one or more storage devices
508, one or more networking devices 510, and other types of
physical hardware. The physical hardware 504 may be simi-
lar in many respects to the hardware layer 310 in FIG. 3; the
processing devices 506 may be similar in many respects to the

15

20

40

45

50

55

14

physical processors 308 in FIG. 3; the storage devices 508
may be similar in many respects to the physical disks 304,
firmware 312, and/or physical memory 316 in FIG. 3; and the
networking device 510 may be one type of physical device
306 discussed above with reference to FIG. 3. The physical
hardware 504 may also include one or more graphics devices
511, e.g., a graphics processing unit.

The virtualization server 502 may also include a hypervi-
sor 512 configured to execute at the virtualization server. The
hypervisor 512 may be similar in many respects to the hyper-
visor 302 in FIG. 3. As noted above, the hypervisor 512 may
have direct access to the physical hardware 504 of the virtu-
alization server 502 as shown by way of example in FIG. 5. As
also noted above, the hypervisor 512 may monitor and man-
age instances of various domains executing at the virtualiza-
tion server 502. As used in this disclosure, the term “domain”
may be used interchangeably with the term “virtual machine.”
Accordingly, reference to “domains” in FIG. 5 should also be
understood as references to virtual machines, such as virtual
machines 332A-C described above with reference to FIG. 3.

One ofthe domains may be a management domain 514 that
may also have direct access to the physical hardware 504 of
the virtualization server 502. In this regard, the management
domain 514 may be a privileged domain and may be similar
in many respects to the virtual machine 332 A described above
with reference to FIG. 3. Other domains executing at the
virtualization server 502 may include guest domains 516. The
guest domains 516 may be unprivileged domains as they may
not have direct access to the physical hardware 504 of the
virtualization server 502. The guest domains 516 in FIG. 5§
may be similar in many respects to the virtual machines
332B-C described above with reference to FIG. 3. Guest
domains may also be referred to as user domains.

As previously discussed, conventional approaches to vir-
tualization may aggregate available services at one virtual
machine having direct access to physical hardware. The
approach described in this disclosure disaggregates available
services into individual service domains 518 and 520 that are
configured to provide a service to the guest domains 516. A
service domain 518 may be a privileged domain having direct
access to at least some of the physical hardware 504 at the
virtualization server 502 and configured to provide a particu-
lar service to one or more guest domains 516. Alternatively, a
service domain 518 may be an unprivileged domain provid-
ing a software service. Service domains 518 may be differ-
entiated based on the particular services the services domains
are configured to respectively provide. Moreover, a service
domain 518 may have completed its initialization process,
which may include configuration of the service domain to
provide a particular service. In view of this, the following
terminology is adopted for the present disclosure. A service
domain that has completed its initialization process and has
been configured to provide a service to a guest domain is
referred to in this disclosure as either an initialized service
domain or a differentiated service domain, terms that may be
used interchangeably.

Service domains 518 may be created in an ad hoc fashion
according to the needs of the guest domains 516. As discussed
in further detail below, a guest domain 516 may have need of
a particular service, and an individual service domain 518
may be created in order to provide the needed service. When
a service domain 518 is no longer needed, the virtualization
system 500 may leave the service domain running (e.g., if the
virtualization system expects to need the service domain in
the future) or the virtualization system may tear down the
service domain (e.g., to reclaim the memory occupied by the
service domain). It will be appreciated that the virtualization

US 9,225,596 B2

15

system 500 may be selectively configured to handle service
domains 518 that are no longer needed.

Various types of services domains 518 may be selectively
employed to provide various types of services to the guest
domains 516. Service domains 518 may include, for example,
software service domains and hardware service domains. A
hardware service domain may have direct access to the physi-
cal hardware 504 of the virtualization server 502. The hard-
ware service domain may include or otherwise have access to
the device drivers used to interface with the hardware devices
of the virtualization server 502. In this regard, hardware ser-
vice domains may also be referred to as driver domains. A
hardware service domain may thus enable a guest domain 516
to access the physical hardware 504 at the virtualization
server 502.

Access to the various hardware devices of the virtualiza-
tion server 502 may be disaggregated among various types of
hardware service domains. Types of hardware service
domains may include, for example, a processing service
domain that provides access to the processing device 506; a
storage service domain that provides access to the storage
device 508, e.g., a hard disk; a network service domain that
provides access to the networking device 510, e.g., a network
interface card; a graphics service domain that provides access
to the graphics device 511, e.g., a graphics processing unit
(GPU); and other types of input/output hardware. It will be
appreciated that additional or alternative types of hardware
service domains may be selectively employed to provide
access to additional or alternative types of hardware devices
at the virtualization server.

In some example implementations, a hardware service
domain may provide access to one and only one hardware
device. In other example implementations, a hardware ser-
vice domain may provide access to multiple hardware
devices. Likewise, a hardware service domain may be paired
with one and only one guest domain 516 in some example
implementations, while in other example implementations, a
hardware service domain may be paired with multiple guest
domains. Stated differently, a hardware service domain may
establish a one-to-one relationship or one-to-many relation-
ship with the hardware devices and/or the guest domains 516
at the virtualization server 502. Accordingly, a hardware ser-
vice domain may perform the multiplexing and demultiplex-
ing of communications exchanged between the guest
domains 516 and the hardware devices of the virtualization
server 502.

As an example, consider a virtualization server having a
total of four network interface cards. In one implementation,
four network service domains may be created and respec-
tively paired with one of the network interface cards in a
one-to-one fashion—one network interface card per network
service domain. In another implementation, two network ser-
vice domains may be established and respectively paired with
two of the network interface cards in a one-to-many fash-
ion—two network interface cards per network service
domain.

Now consider that a total of eight guest domains are oper-
ating at the virtualization server in this example. In the one-
to-one implementation, each of the four services domain may
provide one-fourth of the guest domains with access to the
network interface cards—two guest domains per network
service domain. In the one-to-many implementation, each of
the two service domains may provide one-half of the guest
domains with access to the network interface cards—four
guest domains per network service domain.

In the implementations described above, the network ser-
vice domain may be described as performing the function of

15

20

25

30

40

45

50

55

65

16

a network switch by multiplexing and demultiplexing the
network communications between the guest domains 516 and
the networking devices 510. It will be appreciated that addi-
tional or alternative approaches may be selectively employed
depending on the hardware devices available at the virtual-
ization server. Additionally, the example approaches set forth
above may be likewise employed for additional or alternative
types of hardware devices.

A software service domain may perform a particular soft-
ware function or set of functions for a guest domain 516.
Various types of software service domains may be selectively
employed depending on the needs of the guest domains 516.
Types of software service domains may include software
service domains that provide, for example, DNS services
(Domain Name System), NFS services (Network File Sys-
tem), virus scanning services, authentication and authoriza-
tion (login) services, logging services, and the like.

It will be appreciated that there may be some overlap in the
functionality and operation of hardware service domains and
software service domains. In particular, hardware service
domains may perform software-like functions, and software
service domains may access the physical hardware 504 when
performing their functions. For example, a hardware service
domain providing access to network attached storage could
also provide a software emulated multipath driver, or a hard-
ware service domain providing access to a local disk driver
could also provide a storage clustering service in software.

It will also be appreciated that disaggregating services as
described above provides various technical advantages. For
example, disaggregating services among individual service
domains enables the virtualization server 502 to isolate ser-
vices from one another such that the services may execute in
parallel at their respective service domains. Parallelization
techniques may thus be employed to simultaneously respond
to the needs of the guest domains 516 without requiring a
significant increase in computing resources. Additionally,
disaggregating services among individual service domains
may reduce the dependency between the guest domains 516
that no longer need to share a single management domain.

Undifferentiated Service Domains

Still referring to FIG. 5, individual service domains 518
may be created to perform various tasks for the guest domains
516 as described above. It will be appreciated, however, that
creating a new service domain 518 and starting a new service
within that service domain comes with a certain amount of
overhead, e.g., time, computing resources, and the like. Cre-
ating a new service domain may include, for example, initial-
izing the operating system (e.g., Windows or Linux) in which
the service runs and then initializing the service itself.
Accordingly, a non-negligible wait time may be associated
with creating a new service domain 518 for a guest domain
516. As described below, techniques may be employed to
reduce the wait time associated with creating the new service
domain 518 for the guest domain 516.

As noted above, creating a service domain 518 may include
initializing the operating system and then configuring the
service domain to provide the service. Although the config-
uring step may depend on the service provided, the initializ-
ing the operating system of the service domain may be the
same regardless of the service provided. Accordingly, the
virtualization server 502 may maintain a set 520 of partially
initialized service domains 522 that may be subsequently
configured based on the needs of the guest domains 516. As
discussed in further detail below, partially initializing a ser-
vice domain may involve pausing the boot sequence before
the configuration step is performed. Stated differently, the
partially initialized service domains are not configured to

US 9,225,596 B2

17

provide a particular service In view of this, the following
terminology is adopted for the present disclosure. A service
domain that has not yet completed its boot sequence and has
not been configured to provide a particular service is referred
to in this disclosure as either a partially initialized service
domain or an undifferentiated service domain, terms that may
be used interchangeably. It will be appreciated, however, that
partially initialized service domains may be distinguishable
from one another. For example, the partially initialized ser-
vice domains may have completed various initialization steps
that provide the undifferentiated services domains with some
uniquely identifiable configuration settings. In some example
implementations, the virtualization server may maintain mul-
tiple sets of partially initialized service domains that are dis-
tinguishable from one another, e.g., one set of partially ini-
tialized service domains configured for an operating system
of one type (e.g., Windows) and another set of partially ini-
tialized service domains configured for an operating system
of another type (e.g., Linux).

The set 520 of undifferentiated service domains may
include one or more undifferentiated service domains and
may be referred to as a pool of undifferentiated service
domains. The virtualization server 502 may also maintain a
reference queue 524 that includes references to the individual
undifferentiated service domains 522 in the pool 520. When a
guest domain 516 has need of a service, the management
domain 514 queries the reference queue 524 for the reference
to the next available undifferentiated service domain 522. The
management domain 514 may select the next available undif-
ferentiated service domain 522, and the undifferentiated ser-
vice domain selected may complete initialization and config-
ure itself to provide the service to the guest domain. The
selected undifferentiated service domain 522 may be config-
ured to provide the service based on configuration informa-
tion 526. The configuration information 526 may be stored
locally at the virtualization server 502 and/or at a remote
storage location 528 accessible via a network 530.

As noted above, an undifferentiated service domain 522 is
a partially initialized service domain that has not yet com-
pleted its initialization or been configured to provide a par-
ticular service, e.g., by pausing the boot sequence. As dis-
cussed further below, the initialization sequence of an
undifferentiated service domain 522 may be paused before
the step of configuring the service domain to provide a par-
ticular service. When a guest domain 516 has need of a
service, the management domain 514 or the hypervisor 512
may select one of the undifferentiated service domains 522
from the pool 520 of undifferentiated service domains. The
initialization sequence of the selected undifferentiated ser-
vice domain 522 may be unpaused to complete the initializa-
tion sequence and to configure the service domain to provide
the service to the guest domain 516. By completing the ini-
tialization process and configuring the undifferentiated ser-
vice domain 522 to provide a particular service, the undiffer-
entiated service domain is transformed into a differentiated
(fully initialized) service domain 518. Steps for creating
undifferentiated service domains 522 and differentiated ser-
vice domains 518 will be discussed in further detail below.

As noted above, the hypervisor 512 may be responsible for
processor scheduling, which includes scheduling execution
of'the boot sequence of a service domain. The hypervisor 512
may thus pause the boot sequence of the service domain by
not scheduling the boot sequence for execution at the pro-
cessing units of the virtualization server 502. Accordingly, in
a paused state, an undifferentiated service domain 522 occu-
pies a space in memory at the virtualization server 502 but is
not utilizing any processing resources. In an unpaused state,

10

15

20

25

30

35

40

45

50

55

60

65

18

an undifferentiated service domain 522 occupies a space in
memory and is utilizing processing resources of the virtual-
ization server 502, e.g., to complete the final step of config-
uring the undifferentiated service domain to provide the ser-
vice to a guest domain. It will be appreciated that configuring
a service domain to provide a service may include multiple
steps. Steps for pausing and unpausing undifferentiated ser-
vice domains will be discussed in further detail below.

The reference queue 524 may be a list of unique identifiers
for the undifferentiated service domains 522. The unique
identifier may be, for example, a universally unique identifier
(UUID) and may map to a domain identifier, e.g., an integer,
which in turn may refer to information at the hypervisor 512
that includes details about the undifferentiated service
domain 522 including the location where the undifferentiated
service domain is stored in memory. After an undifferentiated
service domain 522 has been selected from the pool 520 and
configured as a differentiated service domain 518, the man-
agement domain 514 may remove the reference from the
reference queue 524 such that the next undifferentiated ser-
vice domain is available for selection.

The configuration information 526 may determine the type
of differentiated service domain 518 an undifferentiated ser-
vice domain 520 becomes. When a guest domain 516 has
need of aparticular service, the management domain 514 may
write the configuration information 526 to a shared storage
location that is accessible to the undifferentiated service
domains 522. The boot sequence of an undifferentiated ser-
vice domain 522 may be configured to access that shared
storage location when unpaused in order to retrieve the con-
figuration information 526 used to complete the final configu-
ration steps.

The configuration information 526 may be, for example,
information that specifies how the undifferentiated service
domain 522 should configure itself or information that speci-
fies a set of steps the undifferentiated service domain should
execute to complete initialization and configuration. In some
implementations, for example, the configuration information
may be metadata that includes a set of one or more key-value
pairings indicating how an undifferentiated service domain
522 should configure itself. In this example implementation,
the undifferentiated service domain 522 may be configured to
selectively complete initialization and configuration based on
the key-value pairings. Key-value pairings may include, for
example the type of service domain, e.g., a service domain
class (e.g., class=network, class=storage, class=login, etc.).
An undifferentiated service domain 522 may be configured to
selectively initiate a set of services or selectively associate
with a set of hardware devices depending on the type of
service domain class indicated in the metadata. The metadata
may also include other types ofkey-value pairings such as, for
example, a key-value pairing that specifies how many hard-
ware devices and/or guest domains 516 the undifferentiated
service domain should associate with (e.g., device_pair-
ing=1, domain_pairing=1; device_pairing=1, domain_pair-
ing=2; device_pairing=2, domain_pairing=4; etc.). In this
way, the configuration information 526 may indicate whether
a differentiated service domain 518 should establish a one-
to-one or one-to-many relationship with the hardware devices
and/or the guest domains 516. In this example implementa-
tion, the undifferentiated service domain 522 itself may
include the instructions necessary to complete initialization
and configuration.

In other implementations, an undifferentiated service
domain may rely oninstructions included in the configuration
information 526 to complete initialization and configuration.
In these other example implementations, the configuration

US 9,225,596 B2

19

information 526 may be one or more initialization scripts.
The undifferentiated service domain 522 may thus execute
the steps included in the initialization scripts in order to
complete the final initialization and configuration step. It will
be appreciated that the configuration information 526 may be
one or more uniform resource identifiers (URIs) that point to
the initialization scripts. Accordingly, the configuration infor-
mation 526 may include a URI comprising a file path to an
initialization script stored locally at the virtualization server
502 or comprising an uniform resource locator (URL) to an
initialization script (or other configuration information 526)
stored at a remote storage location 528. In some implemen-
tations, the virtualization server 502 may store the initializa-
tion scripts for all possible service classes an undifferentiated
service domain 522 may become.

It will be appreciated that in further example implementa-
tions, the undifferentiated service domain 522 may be con-
figured to utilize both metadata and initialization scripts to
complete the final step of initialization and configuration in
order to become a differentiated service domain. Moreover,
notwithstanding the description of a differentiated service
domain 518 as providing a particular service, it will be appre-
ciated that the configuration information 526 may indicate
one or more services to initiate for the differentiated service
domains, e.g., additional services to facilitate and support the
service provided by the differentiated service domain.

Referring now to FIG. 6, a flowchart 600 of example
method steps for initializing a pool of undifferentiated service
domains is shown. First, the virtualization server may be
booted up and initialized (block 602). The virtualization
server may create the hypervisor and management domain
during the initialization process (block 604). The manage-
ment domain may then initiate population of the pool of
undifferentiated service domains (block 606). The number of
undifferentiated service domains initially created may
depend on the resources available (e.g., the available
memory) at the virtualization server. In some example imple-
mentations, the management domain may create an initial
pool of ten undifferentiated service domains.

The management domain may create a new service domain
(block 608) and initiate the boot sequence of the new service
domain (block 610). Once created, the service domain occu-
pies a space in the memory of the virtualization server and is
utilizing processing resources to execute the boot sequence.
Accordingly, the service domain is in an unpaused state at this
stage. During the boot sequence, however, the new service
domain goes into a paused state at a trigger point (block 612).
As noted above, the new service domain is not utilizing the
processing resources of the virtualization server in the paused
state. The trigger point may be, for example, the point at
which the boot steps common to all service domains have
been completed, e.g., checking memory, storage space, and
the like. Stated differently, the boot sequence for the new
service domain may be paused at a trigger point after baseline
hardware discovery and initialization of baseline services and
before initialization of application-level services. In some
example implementations, the trigger point may the point at
which the boot sequence reaches the user-space initialization
portion of the boot sequence (e.g., the rc.sysinit script or the
init.d directory).

Having paused the boot sequence for the new service
domain, the partially initialized service domain may be
referred to as an undifferentiated service domain. The man-
agement domain may add a reference to the new undifferen-
tiated service domain to the reference queue (614). The new
undifferentiated service domain is thus available for selection
and configuration as a differentiated service domain when a

10

15

20

25

30

35

40

45

50

55

60

65

20

guest domain has need of aparticular service. As noted above,
the management domain may create multiple undifferenti-
ated service domains to populate the pool. In some example
implementations, the virtualization server may clone or copy
an existing undifferentiated service domain to create a new
undifferentiated service domain. If the management domain
decides to create additional undifferentiated service domains
(block 616:Y), then the management domain may repeat
steps 608-614 to create additional undifferentiated service
domains. If the management domain is finished creating
undifferentiated service domains (block 618:N), then the
management domain may wait to receive a service request
(block 618), e.g., an indication that one of the guest domains
has need of a particular service.

FIG. 7 depicts a flowchart 700 of example method steps for
responding to a need for a service a guest domain. The man-
agement domain may populate a pool of undifferentiated
service domains (block 702) and wait to receive a service
request (block 704), e.g., an indication that a guest domain
has need of a particular service. In some examples, a man-
agement domain may receive an explicit request for a service
from, e.g., another management domain operating at the vir-
tualization server, the hypervisor, or the guest domain. In
other example implementations, the request for a particular
service may be implicit as described by way of example
below. Domains executing at the virtualization server may
communicate with each other via an inter-domain communi-
cation channel. As one example, the inter-domain communi-
cation channel may be an explicit channel (e.g., a TCP con-
nection) over a virtualized network channel between the guest
domain and the management domain. In this example, the
service request may be an explicit request for a service. As
another example, the inter-domain communication channel
may be an implicit request for service cause by the configu-
ration of the guest domain (e.g., the guest domain does not
actively request a service, the service request is implied via
the configuration of the guest domain). In this other example,
a guest domain may be configured, e.g., to have access to the
GPU, and the virtualization system may automatically deter-
mine that a hardware service domain is required to provide
the guest domain with access to the GPU. The management
domain may identify the GPU configuration information
when initializing the guest domain and also initialize a new
hardware service domain from one of the undifferentiated
service domains.

If a service request is not received (block 706:N), then the
management domain may continue to wait (block 704). Upon
receipt of a service request (block 706:Y), the management
domain may identify the service requested (block 708) and
write the configuration information associated with the
requested service to a shared storage space (block 710). The
management domain may then query the reference queue for
the next available undifferentiated service domain (block
712). The management domain may select one of the undif-
ferentiated service domains from the pool based on the ref-
erence received from the reference queue (block 714) and
unpause the boot sequence of the selected undifferentiated
service domain (block 716). Having been unpaused, the
selected undifferentiated service domain may access the con-
figuration information and complete initialization and con-
figuration as a differentiated service domain (block 718). The
management domain may then associate the differentiated
service domain with the guest domain (block 720) thereby
providing the requested service to the guest domain.

FIG. 8 depicts a flowchart 800 of example method steps for
pausing and unpausing an undifferentiated service domain.
Upon creation of a new service domain, the management

US 9,225,596 B2

21

domain may initiate the boot sequence of the new service
domain (block 802). The hypervisor may schedule execution
of the boot sequence at one or more of the processing
resources of the virtualization server (804). During the boot
sequence for the new service domain, basic hardware discov-
ery and basic service initialization may be performed (block
806) as described above. At this point, the new service domain
may be considered to be minimally booted. The boot
sequence may be configured such that the next step after the
basic boot steps are complete is the step that accesses the
shared storage location to retrieve the configuration informa-
tion. Accordingly, the trigger point may be the point after the
basic boot steps are complete but before the step that accesses
the configuration information is executed. Upon arrival at the
trigger point (block 808), the new service domain may notify
the hypervisor that it has arrived at the trigger point (block
810). The new service domain may send the notification to the
hypervisor as a hypercall.

When the hypervisor receives the notification from the new
service domain that it has reached the trigger point, the hyper-
visor may deschedule execution of the boot sequence at the
processing resources of the virtualization server (block 812).
Because the hypervisor does not schedule the boot sequence
for execution, the boot sequence of the new service domain is
effectively paused. At this point, the new service domain is
partially initialized and may thus be described as an undiffer-
entiated service domain. The undifferentiated service domain
may thus wait to be selected for further configuration until a
guest domain has need of a particular service (block 814).
While the undifferentiated service domain is waiting to be
selected, the hypervisor does not schedule the paused boot
sequence for execution (block 816). Ifa service request is not
received, (block 818:N), the undifferentiated service domain
may continue to wait in its paused state (block 814).

When a service request is received (block 818:Y), the
management domain may identify the requested service and
write the corresponding configuration information to the
shared storage location (block 820) as described above. The
management domain may then select one of the undifferen-
tiated service domains from the pool and call on the hypervi-
sor to unpause the selected undifferentiated service domain
(block 822). The management domain may, for example,
issue a hypercall to the hypervisor that identifies the undif-
ferentiated domain to be unpaused. The hypercall may
include, for example, the UUID of the selected undifferenti-
ated service domain. In response to receipt of the hypercall
from the management domain, the hypervisor may locate the
selected undifferentiated service domain and once again
schedule the boot sequence for execution (block 824). Once
the hypervisor has scheduled the boot sequence for execution,
the boot sequence is effectively unpaused and may continue.

As noted above, the hypervisor may pause the boot
sequence at the trigger point, e.g., just before the step where
the new service domain accesses the configuration informa-
tion. When the hypervisor unpauses the selected undifferen-
tiated service domain, the next step in the boot sequence may
execute, e.g., the step of retrieving the configuration informa-
tion (block 826). The boot sequence may thus continue in
accordance with the configuration information to obtain a
differentiated service domain that is configured to provide the
requested service (block 828).

As undifferentiated service domains are selected to be
configured as differentiated service domains, the number of
available undifferentiated service domains may diminish.
Accordingly, the management domain may be configured to
periodically replenish the pool of undifferentiated service
domains. In some example implementations, the manage-

30

40

45

22

ment domain may be configured to initiate the creation of new
undifferentiated service domains during periods of relatively
low processing usage. In this way, spare processing cycles
may be efficiently employed to maintain a sufficient number
of undifferentiated service domains. In some circumstances,
the pool of undifferentiated service domain may be depleted,
in which case the management domain may initiate creation
of a service domain from scratch to provide the requested
service. Moreover, the management domain may tear down
unused service domains to reclaim memory as the virtualiza-
tion server becomes more and more utilized. In some example
implementations, the system may employ a centralized load-
balancing service to monitor one or more virtualization serv-
ers and the number of undifferentiated service domains
respectively available at each virtualization server.

The management domain may, for example, be configured
to monitor the number of undifferentiated service domains
remaining in the pool as well as the processor usage of the
virtualization server. If the number of undifferentiated service
domains in the pool drops below a predetermined threshold,
then the management domain may determine that the pool
needs replenishing. If the management domain determines
that processor usage is below a predetermine usage threshold
(e.g., 50%), then the management domain may initiate cre-
ation of one or more new undifferentiated service domains to
replenish the pool. It will be appreciated that the minimum
number of service domains maintained at the virtualization
server as well as the processor usage threshold may depend on
the particular design and needs of the virtualization server.
Additionally, the minimum number of undifferentiated ser-
vice domains and the processor usage threshold may be tun-
able parameters to selectively configure virtualization serv-
ers.

FIG. 9 depicts a flowchart 900 of example method steps for
replenishing a pool of undifferentiated service domains. In
response to receipt of a service request, an undifferentiated
service domain may be selected from the pool and converted
into a differentiated service domain configured to provide the
requested service (block 902). The management domain may
periodically assess the size of the undifferentiated service
pool (block 904) to determine whether the pool needs replen-
ishing, e.g., based on a minimum threshold. If the manage-
ment domain determines that the pool does not need replen-
ishing (block 906:N)—e.g., that the number of
undifferentiated service domains has not dropped below the
minimum threshold—then the management domain may wait
(block 908) for more undifferentiated service domains to be
converted into differentiated service domains (902).

If the management domain determines that the pool does
need replenishing (block 906:Y)—e.g., that the number of
undifferentiated service domains has dropped below the
minimum threshold—then the management domain may
assess the processor usage of the virtualization server (block
910). Ifthe processing usage has not dropped below the usage
threshold (block 912:N), then the management domain may
schedule creation of one or more new undifferentiated service
domains (block 914) and wait until the processor usage drops
below the usage threshold (block 916). The management
domain may periodically reassess the processor usage at the
virtualization server (block 914) and initiate creation of the
new undifferentiated service domains (block 918) when the
processor usage drops below the usage threshold (912:Y). As
noted above, the management domain may add references to
the reference queue for the new undifferentiated service
domains added to the pool (block 920). By periodically
replenishing the pool, the management domain thus ensures a

US 9,225,596 B2

23

sufficient amount of undifferentiated service domains are
available to respond to service requests.

The various approaches described above may be useful to
meet the elastic demand for services from guest domains. In
some instances, it may be difficult to predict which services
the guest domains may have need of. The virtualization server
may thus utilize the pool of undifferentiated service domains
to meet the possibly unpredictable needs of the guest
domains. In other instances, it may be possible to determine
which services are the most common services utilized by the
guest domains. In these other instances, the virtualization
server may maintain one or more pools of differentiated ser-
vice domains to meet the frequent needs of the guest domains
as well as a pool of undifferentiated service domains that may
be reconfigured as the less commonly used and less predict-
able service domains. As an example, the virtualization server
may maintain a first pool of differentiated service domains of
afirst type (e.g., a pool of network service domains), a second
pool of differentiated service domains of a second type (e.g.,
a pool of storage service domains), and a pool of undifferen-
tiated service domains. Additional and alternative implemen-
tations will be appreciated with the benefit of this disclosure.

The disclosures set forth above provide a number of tech-
nical advantages. Disaggregating the service domains, for
example, enables the virtualization server to more efficiently
utilize its processing resources through parallelization tech-
niques. Additionally, disaggregating the service domains
advantageously avoids the performance degradation that may
occur when the services utilized by the guest domains are
aggregated into one management domain. As a result, the
virtualization server may provide the services to the guest
domains with relatively less computing resources. Further-
more, the approaches set forth above reduce the amount of
time a guest domain waits for a requested service domain to
be initialized. Having undifferentiated service domains par-
tially initialized and readily available increases the speed of
starting a requested service. Once a service is requested, the
wait time until the requested service is available is reduced to
the time it takes to complete initialization and configure the
service domain to provide the service. In some instances, the
approaches described above may reduce the startup time of a
requested service by up to 90%. Moreover, by replenishing
the pool of undifferentiated service domains during periods
of relatively low processor usage, the virtualization server
ensures that spare processing cycles do not go to waste. These
technical advantages and more will thus be appreciated with
the benefit of this disclosure.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are described as example implemen-
tations of the following claims.

What is claimed is:
1. A method for providing server virtualization compris-
ing:

generating a partially initialized service domain by pausing
a boot sequence during initialization of a new service
domain;

receiving a request for a service;

writing to a storage location accessible by the partially
initialized service domain configuration information
corresponding to the service requested;

unpausing the boot sequence of the partially initialized
service domain; and

15

20

25

30

35

40

45

50

65

24

completing initialization of the partially initialized service
domain using the configuration information to trans-
form the partially initialized service domain into an ini-
tialized service domain configured to provide the service
requested.
2. The method of claim 1 wherein the partially initialized
service domain is one of a plurality of partially initialized
service domains, the method further comprising:
maintaining a queue of references respectively corre-
sponding to the plurality of partially initialized service
domains, wherein one of the references in the queue
corresponds to the partially initialized service domain;

selecting the partially initialized service domain from the
plurality of partially initialized service domains in
response to receipt of the request; and

removing the reference corresponding to the partially ini-

tialized service domain from the queue upon selection.

3. The method of claim 1 wherein the initialized service
domain provides the service to one or more guest domains
operating at a virtualization server.

4. The method of claim 1 further comprising:

determining that processor usage has dropped below a

predetermined threshold;

creating a new partially initialized service domain; and

adding a new reference corresponding to the new partially

initialized service domain to a queue of references
respectively corresponding to a plurality of partially ini-
tialized service domains.

5. The method of claim 4 wherein creating a new partially
initialized service domain includes cloning an existing par-
tially initialized service domain to obtain the new partially
initialized service domain.

6. The method of claim 1 wherein pausing the boot
sequence of the partially initialized service domain includes
pausing the boot sequence such that the partially initialized
service domain is configurable as one of a plurality of differ-
ent types of initialized service domains.

7. The method of claim 6 wherein:

the partially initialized service domain does not utilize a

processing resource in a paused state; and

the partially initialized service domain does utilize the

processing resource in an unpaused state.

8. The method of claim 1 wherein the configuration infor-
mation is an initialization script stored remotely relative to the
partially initialized service domain.

9. The method of claim 1 wherein the initialized service
domain is one of a software service domain, a hardware
service domain, and a combined hardware and software ser-
vice domain.

10. The method of claim 9 wherein:

the software service domain is selected from the group

consisting of 1) a network file system (NFS) service
domain, ii) a domain name service (DNS) service
domain, and iii) a network switching service domain;
and

the hardware service domain is selected from the group

consisting of iv) a processing service domain, v) a net-
work service domain, vi) a storage service domain, and
vii) a graphics service domain.

11. The method of claim 10 wherein the hardware service
domain manages access to a plurality of hardware devices.

12. An apparatus for providing virtualization services com-
prising:

one or more processors; and

memory storing instructions that, when executed by one of

the processors, cause the apparatus to

US 9,225,596 B2

25

generate a partially initialized service domain by paus-
ing a boot sequence during initialization of a new
service domain,
receive a request for a service,
write to a storage location accessible by the partially
initialized service domain configuration information
corresponding to the service requested,
unpause the boot sequence of the partially initialized
service domain, and
complete initialization of the partially initialized service
domain using the configuration information to trans-
form the partially initialized service domain into an
initialized service domain configured to provide the
service requested.
13. The apparatus of claim 12 wherein:
the partially initialized service domain is one of a plurality
of partially initialized service domains; and
the instructions, when executed by one of the processors,
further cause the apparatus to
maintain a queue of references respectively correspond-
ing to the plurality of partially initialized service
domains, wherein one of the references in the queue
corresponds to the partially initialized service
domain,
select the partially initialized service domain from the
plurality of partially initialized service domains in
response to receipt of the request, and
remove the reference corresponding to the partially ini-
tialized service domain upon selection.
14. The apparatus of claim 12 wherein:
the instructions, when executed by one of the processors,
further cause the apparatus to
determine whether processor usage of one or more pro-
cessors has dropped below a predetermined thresh-
old, and

10

15

20

25

30

26

in response to a determination that processor usage has
dropped below the predetermined threshold, create a
new partially initialized service domain and add a new
reference corresponding to the new partially initial-
ized service domain to a queue of references respec-
tively corresponding to a plurality of partially initial-
ized service domains.

15. The apparatus of claim 12 wherein pausing the boot
sequence of the partially initialized service domain comprises
pausing the boot sequence such that the partially initialized
service domain is configurable as one of a plurality of differ-
ent types of initialized service domains.

16. The apparatus of claim 15 wherein pausing the boot
sequence comprises withholding scheduling of execution of
the boot sequence and unpausing the boot sequence includes
scheduling execution of the boot sequence.

17. The apparatus of claim 16 wherein:

the instructions, when executed by one of the processors,

further cause the apparatus to

receive, from the partially initialized service domain, a
notification indicating that the boot sequence has
reached a trigger point; and

pausing the boot sequence comprises pausing the boot

sequence in response to receipt of the notification.

18. The apparatus of claim 12 wherein:

the configuration information is a set of key-value pairings;

the key-value pairings indicate a service domain type of the

initialized service domain, a number of hardware
devices to associate with the initialized service domain,
and a number of guest domains to associate with the
initialized service domain.

#* #* #* #* #*

